Cd-2021-08-04-all-icsd

../../_images/pareto227.png

The current structure dataset comprises 12826 structures generated from unique ICSD prototype structures composed of single elements with zero oxidation state. A more detailed procedure is found in Phys. Rev. B 99, 214108 (2019). The procedure to estimate interatomic potentials from the dataset is found in Phys. Rev. B 99, 214108 (2019) and Phys. Rev. B 102, 174104 (2020).

Improvement from **-dataset-10000-all-icsd

  • More robust for structures with a small interatomic distance

  • More robust for structures with a large interatomic distance

  • More complex potential models are included.

  • MLPs are estimated without using DFT stress tensors.

  • MLPs are estimated by using small regression weights for energetically unstable structures.

Predictions using Pareto optimal MLPs

../../_images/prediction-ecoh-volume121.png

The cohesive energy and volume are obtained by performing a local structure optimization from the DFT equilibrium structure. In addition, the DFT equilibrium structure is obtained by optimizing a prototype structure included in ICSD, and the prototype is used as the structure legend in the figure. Therefore, the structure type of the converged structure is sometimes different from that shown in the legend even if the potential energy surface predicted by MLP is almost the same as the true one.

The other properties predicted by each Pareto optimal MLP are available from column Predictions in the following table.

Pareto optimals

Name

Time [ms] (1core/36cores)

RMSE [meV/atom]/[eV/A]

Predictions

Files

pair-14

0.017 / 0.038

16.323 / 0.0685

pair-27

0.018 / 0.005

14.405 / 0.0668

pair-28

0.027 / 0.007

12.909 / 0.0527

pair-29

0.039 / 0.009

10.715 / 0.0503

pair-32

0.051 / 0.010

9.7951 / 0.0486

predictions

mlp.lammps input log

pair-33

0.069 / 0.012

9.5609 / 0.0478

predictions

mlp.lammps input log

pair-34

0.096 / 0.016

8.9987 / 0.0472

predictions

mlp.lammps input log

pair-37

0.136 / 0.018

8.3333 / 0.0458

predictions

mlp.lammps input log

pair-38

0.171 / 0.022

8.0639 / 0.0449

predictions

mlp.lammps input log

gtinv-300

0.228 / 0.023

3.3440 / 0.0212

predictions

mlp.lammps input log

gtinv-235

0.281 / 0.023

2.9656 / 0.0193

predictions

mlp.lammps input log

gtinv-312

0.472 / 0.036

2.3859 / 0.0163

predictions

mlp.lammps input log

gtinv-190

0.523 / 0.038

2.1580 / 0.0151

predictions

mlp.lammps input log

gtinv-255

0.573 / 0.040

2.1055 / 0.0149

predictions

mlp.lammps input log

gtinv-195

0.748 / 0.053

2.0771 / 0.0153

predictions

mlp.lammps input log

gtinv-260

0.787 / 0.053

2.0299 / 0.0149

predictions

mlp.lammps input log

gtinv-321

1.240 / 0.088

2.0281 / 0.0162

predictions

mlp.lammps input log

gtinv-313

1.590 / 0.102

1.8869 / 0.0143

predictions

mlp.lammps input log

gtinv-191

1.600 / 0.102

1.7978 / 0.0134

predictions

mlp.lammps input log

gtinv-256

1.780 / 0.109

1.7734 / 0.0132

predictions

mlp.lammps input log

gtinv-220

1.890 / 0.117

1.6563 / 0.0127

predictions

mlp.lammps input log

gtinv-346

3.371 / 0.155

1.4568 / 0.0141

predictions

mlp.lammps input log

gtinv-351

3.420 / 0.142

1.3826 / 0.0125

predictions

mlp.lammps input log

gtinv-221

5.913 / 0.339

1.3818 / 0.0112

predictions

mlp.lammps input log

gtinv-286

6.000 / 0.346

1.3721 / 0.0111

predictions

mlp.lammps input log

gtinv-222

6.837 / 0.369

1.3163 / 0.0109

predictions

mlp.lammps input log

gtinv-227

8.349 / 0.454

1.3130 / 0.0110

predictions

mlp.lammps input log

gtinv-332

13.113 / 0.653

1.3079 / 0.0113

predictions

mlp.lammps input log

gtinv-223

13.159 / 0.653

1.2770 / 0.0107

predictions

mlp.lammps input log

gtinv-288

13.824 / 0.659

1.2696 / 0.0106

predictions

mlp.lammps input log

gtinv-224

14.066 / 0.687

1.2296 / 0.0104

predictions

mlp.lammps input log

gtinv-293

16.676 / 0.807

1.2278 / 0.0106

predictions

mlp.lammps input log

gtinv-229

17.857 / 0.829

1.2059 / 0.0104

predictions

mlp.lammps input log

Column “Time” shows the time required to compute the energy and forces for 1 MD step and 1 atom, which is estimated from a simulation of 10 runs for a structure with 284 atoms using a workstation with Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz. Note that the MLPs should be carefully used for extreme structures. The MLPs often return meaningless values for them.

  • All Pareto optimal MLPs are available here.