Ga-2021-08-04-all-icsd

../../_images/pareto231.png

The current structure dataset comprises 14088 structures generated from unique ICSD prototype structures composed of single elements with zero oxidation state. A more detailed procedure is found in Phys. Rev. B 99, 214108 (2019). The procedure to estimate interatomic potentials from the dataset is found in Phys. Rev. B 99, 214108 (2019) and Phys. Rev. B 102, 174104 (2020).

Improvement from **-dataset-10000-all-icsd

  • More robust for structures with a small interatomic distance

  • More robust for structures with a large interatomic distance

  • More complex potential models are included.

  • MLPs are estimated without using DFT stress tensors.

  • MLPs are estimated by using small regression weights for energetically unstable structures.

Predictions using Pareto optimal MLPs

../../_images/prediction-ecoh-volume125.png

The cohesive energy and volume are obtained by performing a local structure optimization from the DFT equilibrium structure. In addition, the DFT equilibrium structure is obtained by optimizing a prototype structure included in ICSD, and the prototype is used as the structure legend in the figure. Therefore, the structure type of the converged structure is sometimes different from that shown in the legend even if the potential energy surface predicted by MLP is almost the same as the true one.

The other properties predicted by each Pareto optimal MLP are available from column Predictions in the following table.

Pareto optimals

Name

Time [ms] (1core/36cores)

RMSE [meV/atom]/[eV/A]

Predictions

Files

pair-14

0.017 / 0.038

45.287 / 0.1591

pair-27

0.018 / 0.005

20.971 / 0.1029

pair-28

0.027 / 0.007

18.217 / 0.0977

pair-29

0.039 / 0.009

17.823 / 0.0970

pair-31

0.050 / 0.007

16.589 / 0.0940

pair-32

0.051 / 0.010

15.106 / 0.0896

pair-33

0.069 / 0.012

14.545 / 0.0892

pair-34

0.096 / 0.016

13.907 / 0.0884

pair-37

0.136 / 0.018

13.087 / 0.0859

pair-38

0.171 / 0.022

12.849 / 0.0847

gtinv-300

0.228 / 0.023

4.5207 / 0.0401

predictions

mlp.lammps input log

gtinv-235

0.281 / 0.023

3.5511 / 0.0358

predictions

mlp.lammps input log

gtinv-175

0.376 / 0.031

3.2984 / 0.0361

predictions

mlp.lammps input log

gtinv-240

0.393 / 0.030

3.2826 / 0.0359

predictions

mlp.lammps input log

gtinv-312

0.472 / 0.036

3.1222 / 0.0348

predictions

mlp.lammps input log

gtinv-190

0.523 / 0.038

2.4380 / 0.0316

predictions

mlp.lammps input log

gtinv-255

0.573 / 0.040

2.4054 / 0.0313

predictions

mlp.lammps input log

gtinv-195

0.748 / 0.053

2.3838 / 0.0316

predictions

mlp.lammps input log

gtinv-177

1.475 / 0.092

2.3229 / 0.0319

predictions

mlp.lammps input log

gtinv-242

1.506 / 0.092

2.3217 / 0.0318

predictions

mlp.lammps input log

gtinv-191

1.600 / 0.102

1.9067 / 0.0290

predictions

mlp.lammps input log

gtinv-339

1.704 / 0.073

1.7892 / 0.0282

predictions

mlp.lammps input log

gtinv-340

2.596 / 0.116

1.5723 / 0.0264

predictions

mlp.lammps input log

gtinv-351

3.420 / 0.142

1.4381 / 0.0250

predictions

mlp.lammps input log

Column “Time” shows the time required to compute the energy and forces for 1 MD step and 1 atom, which is estimated from a simulation of 10 runs for a structure with 284 atoms using a workstation with Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz. Note that the MLPs should be carefully used for extreme structures. The MLPs often return meaningless values for them.

  • All Pareto optimal MLPs are available here.