K-2021-08-04-all-icsd

../../_images/pareto237.png

The current structure dataset comprises 14924 structures generated from unique ICSD prototype structures composed of single elements with zero oxidation state. A more detailed procedure is found in Phys. Rev. B 99, 214108 (2019). The procedure to estimate interatomic potentials from the dataset is found in Phys. Rev. B 99, 214108 (2019) and Phys. Rev. B 102, 174104 (2020).

Improvement from **-dataset-10000-all-icsd

  • More robust for structures with a small interatomic distance

  • More robust for structures with a large interatomic distance

  • More complex potential models are included.

  • MLPs are estimated without using DFT stress tensors.

  • MLPs are estimated by using small regression weights for energetically unstable structures.

Predictions using Pareto optimal MLPs

../../_images/prediction-ecoh-volume131.png

The cohesive energy and volume are obtained by performing a local structure optimization from the DFT equilibrium structure. In addition, the DFT equilibrium structure is obtained by optimizing a prototype structure included in ICSD, and the prototype is used as the structure legend in the figure. Therefore, the structure type of the converged structure is sometimes different from that shown in the legend even if the potential energy surface predicted by MLP is almost the same as the true one.

The other properties predicted by each Pareto optimal MLP are available from column Predictions in the following table.

Pareto optimals

Name

Time [ms] (1core/36cores)

RMSE [meV/atom]/[eV/A]

Predictions

Files

pair-1

0.012 / 0.003

110.34 / 0.1197

pair-14

0.017 / 0.038

69.221 / 0.0716

pair-27

0.018 / 0.005

52.957 / 0.0807

pair-15

0.026 / 0.039

26.550 / 0.0529

pair-28

0.027 / 0.007

12.930 / 0.0389

pair-16

0.039 / 0.040

9.4656 / 0.0161

pair-29

0.039 / 0.009

5.9117 / 0.0118

pair-17

0.051 / 0.042

5.8915 / 0.0135

pair-32

0.051 / 0.010

3.5431 / 0.0098

predictions

mlp.lammps input log

pair-30

0.053 / 0.011

2.1373 / 0.0089

predictions

mlp.lammps input log

pair-33

0.069 / 0.012

2.0109 / 0.0065

predictions

mlp.lammps input log

pair-34

0.096 / 0.016

1.5699 / 0.0063

predictions

mlp.lammps input log

pair-37

0.136 / 0.018

1.4946 / 0.0062

predictions

mlp.lammps input log

pair-38

0.171 / 0.022

1.4633 / 0.0057

predictions

mlp.lammps input log

pair-39

0.229 / 0.030

1.3928 / 0.0054

predictions

mlp.lammps input log

gtinv-250

0.716 / 0.056

0.9734 / 0.0038

predictions

mlp.lammps input log

gtinv-318

0.906 / 0.068

0.7502 / 0.0028

predictions

mlp.lammps input log

gtinv-265

0.983 / 0.070

0.7322 / 0.0028

predictions

mlp.lammps input log

gtinv-321

1.240 / 0.088

0.6172 / 0.0028

predictions

mlp.lammps input log

gtinv-205

1.307 / 0.088

0.6124 / 0.0027

predictions

mlp.lammps input log

gtinv-270

1.323 / 0.091

0.6011 / 0.0027

predictions

mlp.lammps input log

gtinv-330

1.834 / 0.118

0.5678 / 0.0022

predictions

mlp.lammps input log

gtinv-220

1.890 / 0.117

0.5582 / 0.0022

predictions

mlp.lammps input log

gtinv-285

2.031 / 0.123

0.5395 / 0.0022

predictions

mlp.lammps input log

gtinv-348

2.068 / 0.102

0.5360 / 0.0022

predictions

mlp.lammps input log

gtinv-225

2.394 / 0.148

0.4954 / 0.0020

predictions

mlp.lammps input log

gtinv-290

2.494 / 0.149

0.4813 / 0.0020

predictions

mlp.lammps input log

gtinv-295

3.164 / 0.186

0.4653 / 0.0019

predictions

mlp.lammps input log

gtinv-325

4.984 / 0.282

0.4586 / 0.0021

predictions

mlp.lammps input log

gtinv-211

5.026 / 0.276

0.4559 / 0.0021

predictions

mlp.lammps input log

gtinv-276

5.481 / 0.309

0.4509 / 0.0021

predictions

mlp.lammps input log

gtinv-212

5.696 / 0.300

0.4438 / 0.0021

predictions

mlp.lammps input log

gtinv-277

5.863 / 0.307

0.4383 / 0.0021

predictions

mlp.lammps input log

gtinv-222

6.837 / 0.369

0.4371 / 0.0019

predictions

mlp.lammps input log

gtinv-287

6.946 / 0.371

0.4255 / 0.0019

predictions

mlp.lammps input log

gtinv-334

7.551 / 0.408

0.4007 / 0.0019

predictions

mlp.lammps input log

gtinv-226

7.611 / 0.398

0.3963 / 0.0018

predictions

mlp.lammps input log

gtinv-291

7.688 / 0.412

0.3862 / 0.0018

predictions

mlp.lammps input log

gtinv-227

8.349 / 0.454

0.3815 / 0.0018

predictions

mlp.lammps input log

gtinv-292

8.473 / 0.461

0.3728 / 0.0018

predictions

mlp.lammps input log

gtinv-296

9.822 / 0.510

0.3450 / 0.0017

predictions

mlp.lammps input log

gtinv-232

10.649 / 0.547

0.3399 / 0.0017

predictions

mlp.lammps input log

gtinv-297

10.655 / 0.543

0.3326 / 0.0017

predictions

mlp.lammps input log

gtinv-233

21.512 / 1.002

0.3319 / 0.0017

predictions

mlp.lammps input log

gtinv-298

21.560 / 1.090

0.3256 / 0.0016

predictions

mlp.lammps input log

gtinv-234

21.888 / 1.017

0.3204 / 0.0016

predictions

mlp.lammps input log

gtinv-299

22.419 / 1.031

0.3148 / 0.0016

predictions

mlp.lammps input log

Column “Time” shows the time required to compute the energy and forces for 1 MD step and 1 atom, which is estimated from a simulation of 10 runs for a structure with 284 atoms using a workstation with Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz. Note that the MLPs should be carefully used for extreme structures. The MLPs often return meaningless values for them.

  • All Pareto optimal MLPs are available here.