Sb-2021-08-31-all-icsd

../../_images/pareto253.png

The current structure dataset comprises 13881 structures generated from unique ICSD prototype structures composed of single elements with zero oxidation state. A more detailed procedure is found in Phys. Rev. B 99, 214108 (2019). The procedure to estimate interatomic potentials from the dataset is found in Phys. Rev. B 99, 214108 (2019) and Phys. Rev. B 102, 174104 (2020).

Improvement from **-dataset-10000-all-icsd

  • More robust for structures with a small interatomic distance

  • More robust for structures with a large interatomic distance

  • More complex potential models are included.

  • MLPs are estimated without using DFT stress tensors.

  • MLPs are estimated by using small regression weights for energetically unstable structures.

Predictions using Pareto optimal MLPs

../../_images/prediction-ecoh-volume147.png

The cohesive energy and volume are obtained by performing a local structure optimization from the DFT equilibrium structure. In addition, the DFT equilibrium structure is obtained by optimizing a prototype structure included in ICSD, and the prototype is used as the structure legend in the figure. Therefore, the structure type of the converged structure is sometimes different from that shown in the legend even if the potential energy surface predicted by MLP is almost the same as the true one.

The other properties predicted by each Pareto optimal MLP are available from column Predictions in the following table.

Sb-2021-08-31-all-icsd shows large prediction errors. They should be carefully used. Such an MLP is often accurate for reasonable structures, but it is not accurate for unrealistic structures.

Pareto optimals

Name

Time [ms] (1core/36cores)

RMSE [meV/atom]/[eV/A]

Predictions

Files

pair-27

0.018 / 0.005

36.817 / 0.2178

pair-28

0.027 / 0.007

33.949 / 0.2094

pair-31

0.050 / 0.007

32.345 / 0.2077

pair-32

0.051 / 0.010

29.729 / 0.2041

pair-33

0.069 / 0.012

26.112 / 0.1967

pair-37

0.136 / 0.018

23.481 / 0.1858

pair-38

0.171 / 0.022

22.884 / 0.1840

gtinv-300

0.228 / 0.023

12.265 / 0.1118

gtinv-235

0.281 / 0.023

11.321 / 0.1047

gtinv-175

0.376 / 0.031

11.266 / 0.1041

gtinv-240

0.393 / 0.030

10.932 / 0.1033

gtinv-312

0.472 / 0.036

10.097 / 0.1010

gtinv-190

0.523 / 0.038

9.6394 / 0.0955

predictions

mlp.lammps input log

gtinv-255

0.573 / 0.040

9.4514 / 0.0949

predictions

mlp.lammps input log

gtinv-195

0.748 / 0.053

8.5058 / 0.0934

predictions

mlp.lammps input log

gtinv-260

0.787 / 0.053

8.3115 / 0.0922

predictions

mlp.lammps input log

gtinv-265

0.983 / 0.070

7.9484 / 0.0928

predictions

mlp.lammps input log

gtinv-205

1.307 / 0.088

7.7768 / 0.0950

predictions

mlp.lammps input log

gtinv-270

1.323 / 0.091

7.5011 / 0.0942

predictions

mlp.lammps input log

gtinv-313

1.590 / 0.102

7.4776 / 0.0919

predictions

mlp.lammps input log

gtinv-191

1.600 / 0.102

7.2004 / 0.0873

predictions

mlp.lammps input log

gtinv-339

1.704 / 0.073

6.3525 / 0.0853

predictions

mlp.lammps input log

gtinv-342

1.775 / 0.083

5.7879 / 0.0832

predictions

mlp.lammps input log

gtinv-340

2.596 / 0.116

5.3475 / 0.0815

predictions

mlp.lammps input log

gtinv-343

2.986 / 0.131

4.8043 / 0.0781

predictions

mlp.lammps input log

gtinv-351

3.420 / 0.142

4.7053 / 0.0758

predictions

mlp.lammps input log

gtinv-354

3.661 / 0.154

4.4449 / 0.0749

predictions

mlp.lammps input log

gtinv-349

3.839 / 0.178

4.2193 / 0.0800

predictions

mlp.lammps input log

gtinv-350

6.441 / 0.340

4.1443 / 0.0780

predictions

mlp.lammps input log

gtinv-294

17.107 / 0.825

4.1010 / 0.0718

predictions

mlp.lammps input log

Column “Time” shows the time required to compute the energy and forces for 1 MD step and 1 atom, which is estimated from a simulation of 10 runs for a structure with 284 atoms using a workstation with Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz. Note that the MLPs should be carefully used for extreme structures. The MLPs often return meaningless values for them.

  • All Pareto optimal MLPs are available here.