# Atsuto Seko (Associate Professor)¶

Department of Materials Science and Engineering

Kyoto University

Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

## Research interests¶

- Developments and applications of materials informatics
- First-principles calculations of phase diagram in ceramics systems
- Structure predictions in oxide solid solutions and complex oxides
- Structure predictions in nonstoichiometric oxides

## Open source codes¶

- version 1.0
- version 0.7

- Lassopot

## Journal publications¶

- Machine learning modeling of lattice thermal conductivity using compound descriptors based on phonon density of states
**A. Seko**, A. Togo and I. Tanaka, to be published in arXiv.

- Linearized machine-learning interatomic potentials for non-magnetic elemental metals: Limitation of pairwise descriptors and trend of predictive power
- A. Takahashi,
**A. Seko**and I. Tanaka, J. Chem. Phys., submitted. [arXiv:1710.05677]

- Compositional descriptor-based recommender system for the materials discovery
**A. Seko**, H. Hayashi, and I. Tanaka, J. Chem. Phys. 148, 241719 (2018). [arXiv:1711.06387]

- Exploring Potential Energy Surface by Machine Learning for Characterizing Atomic Transport
- K. Kanamori, K. Toyoura, J. Honda, K. Hattori,
**A. Seko**, M. Karasuyama, K. Shitara, M. Shiga, A. Kuwabara, and I. Takeuchi Phys. Rev. B 97, 125124 (2018). [arXiv:1710.03468]

- Matrix- and tensor-based recommender systems for the discovery of currently unknown inorganic compounds
**A. Seko**, H. Hayashi, H. Kashima and I. Tanaka, Phys. Rev. Materials 2, 013805 (2018). arXiv:1710.00659

- Temperature-dependent phonon spectra of magnetic random solid solutions
- Y. Ikeda, F. Kormann, B. Dutta, A. Carreras,
**A. Seko**, J. Neugebauer, I. Tanaka, npj Comput. Mater. 4, 7 (2018). arXiv:1702.02389

- Conceptual and practical bases for the high accuracy of machine learning interatomic potentials: Application to elemental titanium
- A. Takahashi,
**A. Seko**and I. Tanaka, Phys. Rev. Materials 1, 063801 (2017). arXiv:1708.02741

- Theoretical investigation of solid solution states of Ti
_{1-x}V_{x}H_{2} - N. Otani, A. Kuwabara, T. Ogawa, J. Matsuda,
**A. Seko**, I. Tanaka and E. Akiba, Acta. Mater. 134, 274-282 (2017).

- Theoretical investigation of solid solution states of Ti
- Representation of compounds for machine-learning prediction of physical properties
**A. Seko**, H. Hayashi, K. Nakayama, A. Takahashi, I. Tanaka, Phys. Rev. B 95, 144110 (2017).

- Mode decomposition based on crystallographic symmetry in the band-unfolding method
- Y. Ikeda, A. Carreras,
**A. Seko**, A. Togo and I. Tanaka Phys. Rev. B 95, 024305 (2017).

- First-Principles Selection of Solute Elements for Er- stabilized Bi
_{2}O_{3}Oxide-ion Conductor with Improved Long- term Stability at Moderate Temperatures - K. Shitara, T. Moriasa, A. Sumitani,
**A. Seko**, H. Hayashi, Y. Koyama, R. Huang, D. Han, H. Moriwake and I. Tanaka Chem. Mater. 29, 3763-3768 (2017).

- First-Principles Selection of Solute Elements for Er- stabilized Bi
- Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques
- J. Lee,
**A. Seko**, K. Shitara, K. Nakayama and I. Tanaka, Phys. Rev. B 93, 115104 (2016)

- Machine-learning-based selective sampling procedure for identifying the low-energy region in a potential energy surface: A case study on proton conduction in oxides
- K. Toyoura, D. Hirano,
**A. Seko**, M. Shiga, A. Kuwabara, M. Karasuyama, K. Shitara and I. Takeuchi, Phys. Rev. B 93, 054112 (2016).

- Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and Bayesian optimization
- A. Seko, A. Togo, H. Hayashi, K. Tsuda, L. Chaput and I. Tanaka, Phys. Rev. Lett. 115, 205901 (2015).

- First-principles interatomic potentials for ten elemental metals via compressed sensing
- A. Seko, A. Takahashi and I. Tanaka, Phys. Rev. B 92, 054113 (2015).

- Special quasirandom structure in heterovalent ionic systems
- A. Seko and I. Tanaka, Phys. Rev. B 91, 024106 (2015). arXiv:1408.6875

- Quantum Energy Prediction using Graph Kernel
- J. Duan,
**A. Seko**and H. Kashima Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC) (2015)

- Efficient determination of alloy ground-state structures
- A. Seko, K. Shitara and I. Tanaka, Phys. Rev. B 90, 174104 (2014). arXiv:1407.1734

- Phonon softening in paramagnetic body-centered cubic iron and relationship with phase transition
- Y. Ikeda, A. Seko, A. Togo and I. Tanaka, Phys. Rev. B 90, 134106 (2014).

- Sparse representation for a potential energy surface
- A. Seko, A. Takahashi and I. Tanaka, Phys. Rev. B 90, 024101 (2014). arXiv:1403.7995

- Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single and binary component solids
- A. Seko, T. Maekawa, K. Tsuda and I. Tanaka, Phys. Rev. B 89, 054303 (2014). arXiv:1310.1546

- Cluster expansion of multicomponent ionic systems with controlled accuracy: Importance of long-range interactions in heterovalent ionic system
- A. Seko and I. Tanaka, J. Phys.: Condens. Matter 26 115403 (2014). arXiv:1309.2516

- Theoretical photovoltaic conversion efficiencies of ZnSnP
_{2}, CdSnP_{2}, and Zn_{1-x}Cd_{x}SnP_{2}alloys - T. Yokoyama, F. Oba, A. Seko, H. Hayashi, Y. Nose, and I. Tanaka, Appl. Phys. Express 6, 061201-1-3 (2013).

- Theoretical photovoltaic conversion efficiencies of ZnSnP
- Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms
- K. Fujimura, A. Seko, Y. Koyama, A. Kuwabara, I. Kishida, K. Shitara, C. A. J. Fisher, H. Moriwake and I. Tanaka, Adv. Energy Mater. 3, 980-985 (2013).

- Cluster expansion with controlled accuracy for the MgO/ZnO pseudobinary system via first-principles calculations
- B. Liu, A. Seko and I. Tanaka, Phys. Rev. B 86, 245202 (2012).

- First-principles molecular dynamics study for average structure and oxygen diffusivity at high temperature in cubic Bi
_{2}O_{3} - A. Seko, Y. Koyama, A. Matsumoto and I. Tanaka, J. Phys.: Condens. Matter 24, 475402 (2012).

- First-principles molecular dynamics study for average structure and oxygen diffusivity at high temperature in cubic Bi
- First-principles calculations of the phase diagrams and band gaps in CuInSe
_{2}-CuGaSe_{2}and CuInSe_{2}-CuAlSe_{2}pseudobinary systems - Y. Kumagai, Y. Soda, F. Oba, A. Seko and I. Tanaka, Phys. Rev. B 85, 033203 (2012).

- First-principles calculations of the phase diagrams and band gaps in CuInSe
- Ground-state search in multicomponent magnetic systems
- Y. Kumagai, A. Seko, F. Oba and I. Tanaka, Phys. Rev. B 85, 012401 (2012).

- Structure and dynamics of oxide crystals at high temperatures by first principles calculations
- I. Tanaka, A. Seko, Y. Koyama and A. Togo, AMTC Letters 3, 98-99 (2012).

- Grouping of structures in cluster expansion of multicomponent systems
- A. Seko and I. Tanaka, AMTC Letters 3, 114-115 (2012).

- Grouping of structures for cluster expansion of multicomponent systems with controlled accuracy
- A. Seko and I. Tanaka, Phys. Rev. B 83, 224111 (2011).

- Thermodynamics and structures of oxide crystals by a systematic set of first principles calculations
- I. Tanaka, A. Togo, A. Seko, F. Oba, Y. Koyama and A. Kuwabara, J. Mater. Chem, 20, 10335-10344 (2010).

- Native defects in oxide semiconductors: a density functional approach
- F. Oba, M. Choi, A. Togo, A. Seko and I. Tanaka, J. Phys.: Condens. Matter 22, 384211 (2010).

- Phase relationships and structures of inorganic crystals by a combination of the cluster expansion method and first principles calculations
- I. Tanaka, A. Seko, A. Togo, Y. Koyama and F. Oba, J. Phys.: Condens. Matter 22, 384207 (2010).

- Exploring structures and phase relationships of ceramics from first principles
- A. Seko, J. Am. Ceram. Soc. 93, 1201 (2010) (feature article).

- Classification of spinel structures based on first-principles cluster expansion analysis
- A. Seko, F. Oba and I. Tanaka, Phys. Rev. B 81, 054114 (2010).

- Ground-state structures in MgO-NiO crystalline solutions
- Y. Kumagai, A. Seko, F. Oba, and I. Tanaka, AMTC Letters 2, 180-181 (2010).

- Statistical thermodynamics of oxides by combination of cluster expansion method and first principles calculations
- I. Tanaka, A. Seko, A. Togo, and F. Oba, AMTC Letters 2, 154-155 (2010).

- Cluster expansion method for multicomponent systems based on optimal selection of structures for density-functional theory calculations
- A. Seko, Y. Koyama and I. Tanaka, Phys. Rev. B 80, 165122 (2009). (Editor’s suggestion)

- First principles calculations of advanced nitrides, oxides and alloys
- I. Tanaka, A. Kuwabara, K. Yuge, A. Seko, F. Oba and K. Matsunaga, Key Eng. Mat. 403, 73-76 (2009).

- Structure and stability of a homologous series of tin oxides
- A. Seko, A. Togo, F. Oba and I. Tanaka, Phys. Rev. Lett. 100, 045702 (2008).

- First-principles-based phase diagram of the cubic BNC ternary system
- K. Yuge, A. Seko, Y. Koyama, F. Oba and I. Tanaka, Phys. Rev. B 77, 094121 (2008).

- Structure and phase stability of nonstoichiometric compounds of tin oxides
- A. Seko, A. Togo, F. Oba and I. Tanaka, AMTC Letters 1, 198-199 (2008).

- Atomic arrangement of delta-Bi
_{2}O_{3}with defective fluorite structure by first-principles calculations - A. Matsumoto, A. Seko, Y. Koyama and I. Tanaka, AMTC Letters 1, 210-211 (2008).

- Atomic arrangement of delta-Bi
- X-ray absorption near edge structures of disordered Mg
_{1-x}Zn_{x}O solid solutions - T. Mizoguchi, A. Seko, M. Yoshiya, H. Yoshida, T. Yoshida, W. Y. Ching and I. Tanaka, Phys. Rev. B 76, 195125 (2007).

- X-ray absorption near edge structures of disordered Mg
- Ordering and segregation of a Cu
_{75}Pt_{25}(111) surface: A first-principles cluster expansion study - K. Yuge, A. Seko, A. Kuwabara, F. Oba and I. Tanaka, Phys. Rev. B 76, 045407 (2007).

- Ordering and segregation of a Cu
- First-principles study of bulk ordering and surface segregation in Pt-Rh binary alloys
- K. Yuge, A. Seko, A. Kuwabara, F. Oba and I. Tanaka, Phys. Rev. B 74, 174202 (2006).

- Free Energy Calculations of Precipitate Nucleation
- S. R. Nishitani, A. Seko, K. Yuge and I. Tanaka, Materials Science Forum 539-543, 2395-2400 (2006).

- Prediction of ground-state structures and order-disorder phase transitions in II-III spinel oxides: A combined cluster-expansion method and first-principles study
- A. Seko, K. Yuge, F. Oba, A. Kuwabara and I. Tanaka, Phys. Rev. B 73, 184117 (2006).

- First-principles study of cation disordering in MgAl
_{2}O_{4}spinel with cluster expansion and Monte Carlo simulation - A. Seko, K. Yuge, F. Oba, A. Kuwabara, I. Tanaka and T. Yamamoto, Phys. Rev. B 73, 094116 (2006).

- First-principles study of cation disordering in MgAl
- Pressure-induced phase transition in ZnO and ZnO-MgO pseudo-binary system: A first principles lattice dynamics study
- A. Seko, F. Oba, A. Kuwabara and I. Tanaka, Phys. Rev. B 72, 024107 (2005).

- First-principles study of the effect of lattice vibrations on Cu nucleation free energy in Fe-Cu alloys
- K. Yuge, A. Seko, I. Tanaka and S. R. Nishitani, Phys. Rev. B 72, 174201 (2005).

- First principle calculations of nucleation free energy change for bcc Cu precipitates in Fe-Cu system
- S. R. Nishitani, A. Seko, I. Tanaka, H. Adachi and E. F. Fujita, Solid–Solid Phase Transformations in Inorganic Materials 2005 2, 669-674 (2005).

- First-principle Calculation on Free Energy of Precipitate Nucleation
- A. Seko, S. R. Nishitani, I. Tanaka, H. Adachi and E. F. Fujita, Calphad 28, 173-176 (2004).

- Precise Calculation of Free Energy on Precipitate Nucleation
- A. Seko, S. R. Nishitani, I. Tanaka and H. Adachi, J. Japan Inst. Metals, 68, 973-976 (2004).

- Free-Energy Calculation of Precipitate Nucleation in an Fe-Cu-Ni Alloy
- A. Seko, N. Odagaki, S. R. Nishitani, I. Tanaka and H. Adachi, Mater. Trans. 45, 1978-1981 (2004).

- Vibrational Contribution on Nucleation Free Energy of Cu Precipitates in Fe-Cu System
- K. Yuge, A. Seko, K. Kobayashi, T. Tatsuoka, S. R. Nishitani and H. Adachi, Mater. Trans. 45, 1473-1477 (2004).