第一原理計算と機械学習による高精度原子間ポテンシャルの開発

  1. A. Seko, Machine learning potential repository
  2. A. Seko, Machine learning potentials for multicomponent systems: The Ti-Al binary system
  3. T. Nishiyama, A. Seko, and I. Tanaka, Application of machine learning potentials to predict grain boundary properties in fcc elemental metals
  4. A. Seko, A. Togo and I. Tanaka, Group-theoretical high-order rotational invariants for structural representations: Application to linearized machine learning interatomic potential
  5. A. Takahashi, A. Seko and I. Tanaka, Linearized machine-learning interatomic potentials for non-magnetic elemental metals: Limitation of pairwise descriptors and trend of predictive power
  6. A. Takahashi, A. Seko and I. Tanaka, Conceptual and practical bases for the high accuracy of machine learning interatomic potentials: Application to elemental titanium
  7. A. Seko, A. Takahashi and I. Tanaka, First-principles interatomic potentials for ten elemental metals via compressed sensing
  8. A. Seko, A. Takahashi and I. Tanaka, Sparse representation for a potential energy surface