第一原理計算と機械学習による高精度原子間ポテンシャルの開発¶
- A. Seko, Machine learning potential repository
- A. Seko, Machine learning potentials for multicomponent systems: The Ti-Al binary system
- T. Nishiyama, A. Seko, and I. Tanaka, Application of machine learning potentials to predict grain boundary properties in fcc elemental metals
- A. Seko, A. Togo and I. Tanaka, Group-theoretical high-order rotational invariants for structural representations: Application to linearized machine learning interatomic potential
- A. Takahashi, A. Seko and I. Tanaka, Linearized machine-learning interatomic potentials for non-magnetic elemental metals: Limitation of pairwise descriptors and trend of predictive power
- A. Takahashi, A. Seko and I. Tanaka, Conceptual and practical bases for the high accuracy of machine learning interatomic potentials: Application to elemental titanium
- A. Seko, A. Takahashi and I. Tanaka, First-principles interatomic potentials for ten elemental metals via compressed sensing
- A. Seko, A. Takahashi and I. Tanaka, Sparse representation for a potential energy surface