マテリアルズ・インフォマティクス計算法の開発と応用¶
効率的データ構造を利用した結晶構造列挙手法の開発¶
- K. Shinohara, A. Seko, T. Horiyama, M. Ishihata, J. Honda and I. Tanaka, Enumeration of nonequivalent substitutional structures using advanced data structure of binary decision diagram
機械学習を利用した結晶構造探索¶
- T. Nishiyama, A. Seko, and I. Tanaka, Application of machine learning potentials to predict grain boundary properties in fcc elemental metals
- A. Seko and S. Ishiwata, Prediction of perovskite-related structures in ACuO3-x(A = Ca, Sr, Ba, Sc, Y, La) using density functional theory and Bayesian optimizationPhys. Rev. B 101, 134101 (2020) (Editors' Suggestion) [arXiv:2001.09312]
推薦システムによる新規無機化合物の予測¶
- A. Seko, H. Hayashi, and I. Tanaka, Compositional descriptor-based recommender system for the materials discovery
- A. Seko, H. Hayashi, H. Kashima and I. Tanaka, Matrix- and tensor-based recommender systems for the discovery of currently unknown inorganic compounds
元素・構造特徴量に基づいた一般的化合物特徴量の生成手法¶
- A. Seko, H. Hayashi, K. Nakayama, A. Takahashi, I. Tanaka, Representation of compounds for machine-learning prediction of physical properties
バーチャルスクリーニングによる低格子熱伝導率材料の探索¶
- A. Seko, A. Togo, H. Hayashi, K. Tsuda, L. Chaput and I. Tanaka, Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and Bayesian optimization
機械学習による融点予測モデルの構築¶
- A. Seko, T. Maekawa, K. Tsuda and I. Tanaka, Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single and binary component solids
リチウム二次電池のための固体電解質のイオン伝導度予測¶
- K. Fujimura, A. Seko, Y. Koyama, A. Kuwabara, I. Kishida, K. Shitara, C. A. J. Fisher, H. Moriwake and I. Tanaka, Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms